Duới đây là các thông tin và kiến thức về đối xứng tâm hot nhất hiện nay được bình chọn bởi người dùng
1. Định nghĩa phép đối xứng tâm
Phép đối xứng tâm được định nghĩa như sau:
Cho điểm I, phép biến hình biến điểm I thành chính nó, biến mỗi điểm M khác I thành M′ sao cho M ′ đối xứng với M qua I (hay I chính là trung điểm thì được gọi là phép đối xứng tâm I).
Tâm đối xứng được kí hiệu là I
1.1 Kí hiệu
Đ$_{I}$ là kí hiệu của phép đối xứng tâm I
1.2. Công thức
Từ định nghĩa phép đối xứng tâm ta có thể suy ra được công thức như sau:
M’=Đ$_{I}(M)Rightarrow overline{IM’} =-overline{IM}$
1.3. Biểu diễn ảnh qua phép đối xứng tâm
Nếu hình ℋ có hình ℋ ’ là ảnh qua Đ$_{I}$ thì ta còn nói là ℋ ’ đối xứng với ℋ qua tâm I, hay ℋ và ℋ ’ đối xứng với nhau qua I.
2. Tính chất phép đối xứng tâm
2.1.Tính chất 1
-
Nếu Đ$_{I}$(M) = M’ và Đ$_{I}$(N)=N’
Thì M’N’ = MN
$overline{M’N’} = overline{-MN}$
Lưu ý:
Nếu ba điểm M, N, P thẳng hàng theo thứ tự thì qua phép đối xứng tâm I biến thành M’, N’, P’ tương ứng cũng thẳng hàng theo thứ tự đó.
2.2. Tính chất 2
-
Bảo toàn khoảng cách giữa hai điểm
-
Chuyển một đường thẳng thành đường thẳng song song hoặc trùng với nó
-
Chuyển một đoạn thẳng thành đoạn thẳng bằng với đoạn thẳng đó
-
Chuyển một tam giác thành tam giác bằng tam giác ban đầu
-
Biến một đường tròn trở thành một đường tròn khác có cùng bán kính
3. Biểu thức tọa độ của phép đối xứng tâm
3.1. Biểu thức tọa độ của phép đối xứng qua gốc tọa độ
Trong mặt phẳng tọa độ Oxy cho M(x; y), gọi tọa điểm M’(x’; y’) là ảnh của M qua phép đối xứng tâm O, ta có:
Đ$_{O}$(M) = M’
Thì x’ = -x
y’ = -y
3.2. Biểu thức tọa độ của phép đối xứng tâm bất kỳ
Gọi M’(x’; y’) là ảnh của M(x; y) trong mặt phẳng Oxy cho I(a; b), M(x; y), qua phép đối xứng tâm I thì ta có:
Đ$_{I}(M) =M’$
Nên điểm I là trung điểm của MM’
Suy ra: tọa độ $I (a; b) = (frac{x + x’}{2}; frac{y + y’}{2})$
$Rightarrow a =frac{x + x’}{2}$
$b =frac{y + y’}{2})$
$Rightarrow 2a =x+x’$
$2b =y+y’$
Suy ra:
x’ = 2a – x y’ = 2b – y
4. Tâm đối xứng của một hình Định nghĩa: điểm O được gọi là tâm đối xứng của hình ℋ nếu phép đối xứng tâm O biến ℋ thành chính nó.
Ví dụ trong thực tế
Tâm đối xứng của một số hình phẳng
* Phương pháp tìm tâm đối xứng của một hình
Nếu hình đã cho là một đa giác thì sử dụng tính chất: Một đa giác có tâm đối xứng O thì qua phép đối xứng tâm O mỗi đỉnh của nó phải biến thành một đỉnh của đa giác, mỗi cạnh của nó phải biến thành một cạnh của đa giác song song và bằng cạnh ấy.
Nếu hình đã cho không phải là một đa giác thì ta sẽ sử dụng định nghĩa.
5. Một số dạng bài tập về phép đối xứng tâm từ cơ bản đến nâng cao (có lời giải)
5.1. Dạng 1: Tìm ảnh của một điểm qua phép đối xứng tâm
Phương pháp: áp dụng biểu thức tọa độ của phép đối xứng tâm
Gọi M’(x’; y’) là ảnh của M(x; y) qua phép đối xứng tâm
Nếu tâm đối đối xứng là gốc tọa độ O (0; 0)
x’ = − x
y’ = − y
Xem thêm: Al2O3 + NaOH + H2O = NaAl(OH)4 Chi tiết cân bằng phương trình
Nếu tâm đối đối xứng là gốc tọa độ I(a; b)
x’ = 2a − x
y’ = 2b − y
VD1: Trong mặt phẳng tọa độ Oxy. Ảnh của điểm M(-2021; 2022) qua phép đối xứng tâm O(0; 0) là:
a. M’(2021; 2022)
b. M’(2021; -2022)
c. M’(-2021; 2022)
d. M’(-2021; -2022)
Giải
Qua phép đối xứng tâm O, có M’(x’, y’) là ảnh của M qua phép đối xứng tâm O
Ta có biểu thức tọa độ phép đối xứng tâm O là:
x’ = -x = 2021
y’ = -y = -2022
M’(2021; -2022)
Chọn đáp án B
VD2: Trong mặt phẳng tọa độ Oxy. Ảnh của điểm M(1; -6) qua phép đối xứng tâm I(-2; 5) là:
a. M’(-5; 16)
b. M’(5; -16)
c. M’(-4; 3)
d. M’(4; -3)
Giải
Qua phép đối xứng tâm I giả sử điểm M’(x’, y’) là ảnh của M
Ta có biểu thức tọa độ phép đối xứng tâm I là:
x’ = 2a – x
y’ = 2b – y
⇔ x’ = 2 . (-2) – 1
y’ = 2 . 5 – (-6)
⇔ x’ = -5
y’ = 16
$Rightarrow$ M’(-5; 16)
$Rightarrow$ Chọn đáp án A
5.2. Dạng 2: Tìm ảnh của một đường thẳng qua phép đối xứng tâm
Phương pháp: dựa vào tính chất phép đối xứng tâm sẽ biến một đường thẳng thành đường thẳng song song hoặc trùng với nó
– Bước 1: Lấy hai điểm bất kì thuộc đường thẳng đó.
– Bước 2: Tìm ảnh qua phép đối xứng tâm của hai điểm đã lấy từ bước 1.
– Bước 3: Từ hai điểm thuộc đường thẳng ta sẽ viết được phương trình đường thẳng cần tìm.
VD1: Cho đường thẳng d thuộc mặt phẳng Oxy có phương trình:
x + 2y + 4 = 0. Vận dụng phép đối xứng tâm O(0;0), tìm ảnh của đường thẳng d
a. x + y + 4 = 0
b. x + y – 4 = 0
c. x + 2y – 4 = 0
d. 2x + 3y + 4 = 0
Giải
Ta có phương trình d là x + 2y + 4 = 0,
Lấy 2 điểm A(0; -2), B(-4; 0)
Gọi A’, B’ lần lượt là ảnh qua phép đối xứng tâm O của A, B. Khi đó ta có:
$x_{A’} = -x_{A} = 0$
$y_{A’} = -y_{A} = 2$
Xem thêm: Học phí Acet TPHCM mới nhất bao nhiêu? – THPT Lê Hồng Phong
$Rightarrow$ A’(0, 2)
Tương tự:
$x_{B’} = -x_{B} = 4$
$y_{B’} = -y_{B} = 0$
$Rightarrow$ B’(4, 0)
Gọi d’ là ảnh của d qua phép đối xứng tâm O. Khi đó, theo tính chất của phép đối xứng tâm thì d’ sẽ đi qua hai điểm A’ và B’.
Suy ra $overline{A’B’}$ là vectơ chỉ phương của d’
Ta có: $overline{A’B’} (4; -2) Rightarrow bar{n} (1; 2)$
Phương trình đường thẳng d’ là:
1(x – 0) + 2(y – 2) = 0
$Rightarrow$ x + 2y – 4 = 0
$Rightarrow$ Chọn đáp án C
VD2: Trong mặt phẳng Oxy cho đường thẳng d có phương trình là
3x – 4y + 6 = 0, điểm I(2; -4). Viết phương trình đường thẳng d’ biết d’ là ảnh của d qua phép đối xứng tâm I.
a. 3x + 2y + 34 = 0
b. -3x + 2y + 34 = 0
c. 2x + 3y – 34 = 0
d. -2x + 3y – 34 = 0
Giải
Ta có phương trình d là 3x – 2y + 6 = 0,
Lấy 2 điểm A(0; 3), B(-2; 0)
Sử dụng phép đối xứng tâm I, ta gọi A’, B’ lần lượt là ảnh của A, B. Khi đó biểu thức tọa độ phép đối xứng tâm I là:
$x_{A’}=2a – x_{A}$
$y_{A’} =2b – y_{A}$
⇔ $x_{A’}=2 . 2 – 0$
$y_{A’}=2 . (-4) – 3$
⇔ $x_{A’}=4$
$y_{A’}= -11$
$Rightarrow$ A’(4, -11)
Tương tự:
$x_{B’}=2a – x_{B}$
$y_{B’}=2b – y_{B}$
⇔ $x_{B’}=2 . 2 + 2$
$y_{A’}=2 . (-4) – 0$
⇔ $x_{A’}=6$
$y_{A’}= -8$
$Rightarrow$ B’(6, -8)
Sử dụng phép đối xứng tâm I ta có d’ là ảnh của d. Khi đó, d’ sẽ đi qua hai điểm A’ và B’.
Ta có: $overline{A’B’} (2; 3) Rightarrow bar{n} (-3; 2)$
Phương trình đường thẳng d’ là:
-3(x – 4) + 2(y + 11) = 0
$Rightarrow -3x + 2y + 34 = 0$
$Rightarrow$ Chọn đáp án B
5.3. Dạng 3: Tìm ảnh của đường tròn qua phép đối xứng tâm
Phương pháp: dựa vào việc biến đường tròn thành đường tròn có cùng bán kính của phép đối xứng tâm.
– Bước 1: Tìm bán kính và tâm của đường tròn.
– Bước 2: Dùng phép đối xứng tâm tìm ảnh của tâm đường tròn.
Xem thêm: [TỔNG HỢP] Các phương trình hóa học lớp 8 cần nhớ cho học sinh
– Bước 3: Viết phương trình đường tròn có bán kính bằng bán kính đường tròn đề bài và có tâm vừa tìm được ở trên.
VD1: Trong mặt phẳng tọa độ Oxy, tìm phương trình đường tròn (C’) là ảnh của đường tròn (C): $(x – 1)^{2} + (y+3)^{2}=16$ qua phép đối xứng tâm O(0; 0).
a. $(x + 1)^{2} + (y – 3)^{2}=16$
b. $(x – 1)^{2} + (y + 3)^{2}=16$
c. $(x – 1)^{2} + (y + 3)^{2}=9$
d. $(x + 1)^{2} + (y – 3)^{2}=9$
Giải
Gọi tâm và bán kính của đường tròn (C) lần lượt là I và R
Ta có phương trình (C): $(x – 1)^{2} + (y + 3)^{2}=16$
Suy ra: tọa độ I(1; -3), R = 4
Gọi tâm và bán kính của đường tròn (C’) lần lượt là I’ và R’
Theo tính chất của phép đối xứng tâm O, ta có
R’ = R = 4
Biểu thức tọa độ phép đối xứng tâm O là:
x’ = – x = -1
y’ = – y = 3
$Rightarrow$ I’(-1; 3)
Suy ra phương trình đường tròn (C’) là:
$(x + 1)^{2} + (y – 3)^{2}=16$
$Rightarrow$ Chọn đáp án A
VD2: Trong mặt phẳng Oxy cho đường tròn (C): $x^{2} + y^{2} + 2x – 4y + 1=0$ điểm A(1; 2). Tìm ảnh của (C) qua phép đối xứng tâm A.
a. $(x + 3)^{2} + (y + 2)^{2}=4$
b. $(x – 3)^{2} + (y + 2)^{2}=4$
c. $(x + 3)^{2} + (y – 2)^{2}=4$
d. $(x – 3)^{2} + (y – 2)^{2}=4$
Giải
Gọi tâm và bán kính của đường tròn (C) lần lượt là I và R
Ta có phương trình (C):
$x^{2} + y^{2} + 2x – 4y + 1=0$
⇔ $(x^{2} + 2x +1) + (y^{2} – 4y + 4) + 1 – 1 – 4=0$
⇔ $(x + 1)^{2} + (y – 2)^{2}=4$
Suy ra: I(-1; 2) và R = 2
Gọi tâm đường tròn (C’) là ảnh của (C) qua phép đối xứng tâm A có tâm và bán kính lần lượt là I’ và R’
Ta có:
R’ = R = 2
Biểu thức tọa độ phép đối xứng tâm A là:
x’ = 2a – x
y’ = 2b – y
⇔ x’ = 2 . 1 + 1
y’ = 2 . 2 – 2
⇔ x’ = 3
y’ = 2
$Rightarrow$ I’(3; 2)
Suy ra phương trình đường tròn (C’) là:
$(x – 3)^{2} + (y – 2)^{2}=4$
$Rightarrow$ Chọn đáp án D
Trên đây là đầy đủ nội dung và bài tập có lời giải chi tiết về phép đối xứng tâm. Hy vọng các em có thể tham khảo và vận dụng tốt bài giảng này để đạt điểm cao trong các kỳ thi sắp tới. Các em có thể truy cập ngay Vuihoc.vn để đăng ký tài khoản hoặc liên hệ trung tâm hỗ trợ để chuẩn bị được kiến thức tốt nhất cho kỳ thi THPT Quốc gia nhé!
Bản quyền nội dung thuộc Nhất Việt Edu
Bài viết liên quan