Trong bài viết này chúng tôi sẽ giúp các bạn tìm hiểu thông tin và kiến thức về Duong trung hot nhất hiện nay được bình chọn bởi người dùng
Chắc hẳn các bạn học sinh không còn xa lạ gì với đường trung bình của tam giác trong toán học, nhưng không phải ai cũng hiểu rõ định nghĩa cũng như công thức của nó, cùng tìm hiểu ngay về đường trung bình của tam giác trong bài viết này nhé
1. Định nghĩa đường trung bình tam giác
Trong toán học, đường trung bình của tam giác được định nghĩa là đoạn thẳng nối hai trung điểm bất kỳ trong một tam giác, ba cạnh của tam giác sẽ tạo ra ba đường trung bình và đường trung bình của tam giác sẽ tạo ra các cặp cạnh tỉ lệ với nhau và song song với cạnh còn lại.
Trong trường hợp đặc biệt, nếu là tam giác đặc biệt như tam giác đều hay tam giác cân, đường trung bình của các tam giác này có thể bằng nửa cạnh thứ ba
MN là đường trung bình của tam giác ABC
2. Định lý về đường trung bình trong tam giác
Trong một vài dạng bài tập, cần hiểu rõ về các định lý của đường trung bình trong tam giác mới có thể làm đúng yêu cầu của đề bài. Đường trung bình của tam giác có 2 định lý chính
Định lý 1
Trong một tam giác, nếu một đường thẳng đi qua một cạnh của tam giác và song song với cạnh thứ hai thì đường thẳng đó đi qua trung điểm của cạnh thứ ba
Dạng bài thường gặp ở định lý này là dạng bài liên quan đến cạnh và góc, bao gồm cách tính và chứng minh các hệ thức về cạnh và góc
Định lý 2
Đường trung bình của tam giác bằng ½ cạnh thứ 3 và song song với cạnh ấy. Dạng toán thường được áp dụng là chứng minh một đường thẳng là đường trung bình của một tam giác
3. Tính chất của đường trung bình của tam giác
- Một đường thẳng đi qua trung điểm của một cạnh của tam giác và song song với một cạnh thứ 3 thì sẽ đi qua trung điểm của cạnh thứ 2 (cạnh còn lại)
- Đường trung bình của tam giác luôn song song với cạnh thứ ba và bằng ½ độ dài của cạnh đó
Trong các dạng bài tập liên quan hầu hết người học đều phải vận dụng các tính chất đường trung bình để chứng minh các đẳng thức và yêu cầu đề ra
Tính chất đường trung bình của tam giác vuông
Tam giác vuông là tam giác có 2 cạnh tạo nên một góc 90 độ, khi nối 2 trung điểm của 2 cạnh góc vuông ta sẽ được một đường trung bình song song với cạnh còn lại, còn khi nối trung điểm của một cạnh góc vuông và 1 cạnh thường thì đường trung bình sẽ vuông góc với một cạnh góc vuông
VD:
Ví dụ về đường trung bình trong tam giác vuông
Trong tam giác vuông MNP ta có OQ là đường trung bình của tam giác và OQ song song và bằng một nửa cạnh MN. Đặc biệt đây là trường hợp tam giác vuông nên OQ sẽ vuông góc với MP
Xem thêm: PSG là gì? Những thông tin liên quan đến đội bóng PSG
Cách chứng minh đường trung bình của tam giác vuông
Để chứng minh 1 đường thẳng là đường trung bình của tam giác vuông thì trước hết đường thẳng đó phải song song với một trong ba cạnh của tam giác
Tiếp theo thì đường thẳng phải đáp ứng yêu cầu là vuông góc với 1 trong 2 cạnh góc vuông của tam giác vuông
Đặc biệt, đường trung bình của tam giác vuông hay được liên hệ và vận dụng trong các dạng bài của hình thang vuông, bạn cần nắm rõ về phần lý thuyết này để học chắc những phần sau.
4. Các dạng toán phổ biến về đường trung bình của tam giác
Dạng 1: Dạng liên quan đến cạnh và góc, bao gồm các dạng như tính độ dài cạnh, số độ của góc hay chứng minh các hệ thức liên quan
Để có thể giải quyết dạng toán này, phương pháp được áp dụng chủ yếu là dựa vào tính chất đường trung bình của tam giác kết hợp với các kiến thức về góc và cạnh khác. Cụ thể là định lý 1 và định lý 2 như đã nêu ở trên
Dạng 2: Là dạng chứng minh một đường thẳng bất kì là đường trung bình của tam giác.
Để có thể làm được dạng bài tập này, bạn cần hiểu và áp dụng định nghĩa đường trung bình của tam giác. Từ kiến thức đường trung bình là đoạn thẳng nối trung điểm hai cạnh của tam giác lại với nhau ta sẽ chứng minh được đường thẳng đó là đường trung bình của tam giác
5. Một số bài tập mẫu về đường trung bình trong tam giác
Bài tập 1:
Hình minh họa bài tập 1
Xét tam giác ABC có:
- I là trung điểm của AB
- J là trung điểm của BC
Theo định lý đường trung bình của tam giác ta suy ra được IJ là đường trung bình tam giác ABC
Bài tập 2: Cho tam giác MNP, các đường trung tuyến NA và PB cắt nhau ở C. Gọi D, E theo thứ tự là trung điểm của NA, BP. Chứng minh rằng BA//DE, BA= DE.
* Trong MNP, ta có:
B là trung điểm của MN (giả thiết)
Xem thêm: Xính lao có nghĩa là gì? Những ý nghĩa của từ Xính lao trong phim
A là trung điểm của MP (giả thiết)
Nên AB là đường trung bình của MNP
Theo tính chất đường trung bình của tam giác
AB//DE và AB = NP/2 (1)
* Trong NPC, ta có:
D là trung điểm của NC (gt)
E là trung điểm của PC (gt)
Nên DE là đường trung bình của NPC
Lại từ tính chất đường trung bình tam giác, suy ra:
DE // NP và DE = NP/2 (2)
Từ (l) và (2) suy ra: AB // DE, AB = DE
Một số bài tập luyện thêm
Bài 1: Cho tam giác ABC, có AM là trung tuyến ứng với BC. Trên cạnh AB lấy điểm D và E sao cho AD = DE = EB. Đoạn thẳng CD cắt AM tại điểm I. Chứng minh rằng
a) EM // DC
b) I là trung điểm AM
Xem thêm: Đóng vai cô kĩ sư kể lại truyện Lặng lẽ Sa Pa hay chọn lọc
c) DC = 4DI
Bài 2: Cho tam giác ABC cân tại A, có M là trung điểm của BC. Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F. Chứng minh:
a) EF là đường trung bình của tam giác ABC;
b) AM là đường trung trực của EF.
Bài 2: Cho hình thang ABCD vuông tại A và D. Gọi E, F lần lượt là trung điểm của AD và BC. Chứng minh
a) AFD cân tại F
b) Tam giác BAF =Tam giác CDF
Bài 3: Cho tam giác ABC có AM là trung tuyến ứng với cạnh BC. Trên cạnh AC lấy điểm D sao cho AD = ½ DC. Kẻ Mx song song song với BD và cắt AC tại E. Đoạn BD cắt AM tại I. Chứng minh rằng:
a) AD = DE = EC;
b) SAIB = SIBM ;
c) SABC = SIBC .
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Từ H kẻ Hx vuông góc với AB tại P, Hy vuông góc với AC tại Q. Trên các tia Hx, Hy lần lượt lấy các điểm D và E sao cho PH = PD; QH = QE. Chứng minh:
a) A là trung điểm của DE
b) PQ = ½ DE
c) PQ = AH
Kết luận: Bài viết trên là toàn bộ những kiến thức quan trọng liên quan đến đường trung bình của tam giác, các bạn cần nắm rõ các kiến thức như định lý và tính chất để vận dụng vào bài tập. Để biết thêm nhiều dạng bài cũng như những thông tin toán học bổ ích hãy tiếp tục theo dõi chúng tôi nhé.
Bản quyền nội dung thuộc Nhất Việt Edu
Bài viết liên quan